CBSE Class 10 Mathematics Important Questions Chapter 8 Introduction to Trigonometry

2 Marks Questions

1. In \triangle ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine:

(i) $\sin A \cos A$

(ii) $\sin C \cos C$

Ans. Let us draw a right angled triangle ABC, right angled at B.

Using Pythagoras theorem,

 $AC^{2} = AB^{2} + BC^{2}$ $= (24)^{2} + (7)^{2} = 576 + 49 = 625$ $\Rightarrow AC = 25 \text{ cm}$ (i) $\sin A = \frac{BC}{AC} = \frac{7}{25}, \cos A = \frac{AB}{AC} = \frac{24}{25}$ (ii) $\sin C = \frac{AB}{AC} = \frac{24}{25}, \cos C = \frac{BC}{AC} = \frac{7}{25}$

2. In adjoining figure, find $\tan P - \cot R$:

Ans. Using Pythagoras theorem,

 $\mathsf{P}\mathsf{R}^2 = \mathsf{P}\mathsf{Q}^2 + \mathsf{Q}\mathsf{R}^2$

$$\Rightarrow (13)^2 = (12)^2 + QR^2$$

- \Rightarrow QR² =169 144 = 25
- ⇒ QR = 5 cm

$$\therefore \tan P - \cot R = \frac{QR}{PQ} - \frac{QR}{PQ} = \frac{5}{13} - \frac{5}{13} = 0$$

If $\sin A = \frac{3}{4}$, calculate $\cos A$ and $\tan A$.

Ans. Given: A triangle ABC in which $\angle B = 90^{\circ}$

Let BC = 3k and AC = 4k

Then, Using Pythagoras theorem,

$$AB = \sqrt{(AC)^{2} - (BC)^{2}} = \sqrt{(4k)^{2} - (3k)^{2}}$$
$$= \sqrt{16k^{2} - 9k^{2}} = k\sqrt{7}$$

4. Given $15 \cot A = 8$, find $\sin A$ and $\sec A$

Ans. Given: A triangle ABC in which $\angle B = 90^{\circ}$

 $15 \cot A = 8$

$$\Rightarrow \cot A = \frac{8}{15}$$

Let

AB

 $= \frac{8k}{2}$ and

BC

= 15k

Then using Pythagoras theorem,

AC =
$$\sqrt{(AB)^2 + (BC)^2} = \sqrt{(8k)^2 + (15k)^2}$$

= $\sqrt{64k^2 + 225k^2} = \sqrt{289k^2} = 17k$

$$\therefore \quad \sin A = \frac{BC}{AC} = \frac{15k}{17k} = \frac{15}{17}$$
$$\sec A = \frac{AC}{AB} = \frac{17k}{8k} = \frac{17}{8}$$

5. If \angle And \angle B are acute angles such that $\cos A = \cos B$, then show that \angle A = \angle B.

Ans. In right triangle ABC,

 $\cos A = \frac{AC}{AB}$ and $\cos B = \frac{BC}{AB}$

But $\cos A = \cos B$ [Given]

$$\Rightarrow \frac{AC}{AB} = \frac{BC}{AB} \Rightarrow AC = BC$$
$$\Rightarrow \angle A = \angle B$$

[Angles opposite to equal sides are equal]

6. State whether the following are true or false. Justify your answer.

(i) The value of $\tan A$ is always less than 1.

(ii) $\sec A = \frac{12}{5}$ for some value of angle A.

(iii) $\cos A$ is the abbreviation used for the cosecant of angle A.

(iv) $\cot A$ is the product of \cot and A.

(v)
$$\sin \theta = \frac{4}{3}$$
 for some angle θ .

Ans. (i) False because sides of a right triangle may have any length, so $\tan A$ may have any value.

(ii) True as $\sec A$ is always greater than 1.

(iii) False as $\cos A$ is the abbreviation of cosine A.

(iv) False as $\cot A$ is not the product of 'cot' and A. 'cot' is separated from A has no meaning.

(v) False as $\sin \theta$ cannot be > 1

3 Marks Questions

1.	sec Given	$\theta = \frac{13}{12}$,	calculate	all		other	trigonometric	ratios.
	12k B	C 5k						
Ans. Co	nsider	а	triangle	ABC	in	which $\angle A$	$= \theta$ and $\angle B$	= 90°
Let		AB		= 12k	and		BC	= 5k
Then,			using			Pythagoras		theorem,
BC $= \sqrt{(13k)^{2}}$ $= \sqrt{169k^{2}}$ $= \sqrt{25k^{2}}$ $\sin \theta = \frac{A}{A}$ $\cos \theta = \frac{A}{A}$ $\tan \theta = \frac{B}{A}$ $\cot \theta = \frac{A}{B}$ $\cos ec\theta = \frac{A}{B}$	$\frac{1}{2} - (12k)^{2}$ $= -144k^{2}$ $= -144k^{2}$ $= -144k^{2}$ $= -144k^{2}$ $= -12k^{2}$ $= -$	$\frac{5}{13}$					= √ ^(A)	C) ² -(AB) ²

2. (i) $\frac{\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}}{(ii) \cot^2\theta}$ If $\cot \theta = \frac{7}{8}$, evaluate:

Ans. Consider	а	triangle	ABC	in	which	∠A	$= \theta$ and $\angle B$	= 90°
Let	AB		=7k	and		В	С	= 8k
Then,		using			Pythagora	IS		theorem,
						(BC)	$(1)^{2} + (AB)^{2}$	$(k)^{2} + (7k)^{2}$
AC						= V()	· · · · · · · · · · · · · · · · · · ·)
$=\sqrt{64k^2+49k^2}=\sqrt{1}$	$113k^2 =$	$\sqrt{113k}$						
$\sin \theta = \frac{BC}{AC} = \frac{8k}{\sqrt{113}}$	$\frac{1}{k} = \frac{8}{\sqrt{113}}$	-						
$\cos\theta = \frac{\text{AB}}{\text{AC}} = \frac{7k}{\sqrt{113k}} =$	$\frac{7}{\sqrt{113}}$							
$(1 + \sin \theta)(1 - \sin \theta)$)							
(i) $\frac{(1+\cos\theta)(1-\cos\theta)}{(1-\cos\theta)}$	7)							
$1-\sin^2\theta$								
$=\overline{1-\cos^2\theta}$								
$\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$								
= 113								
$\frac{113-64}{112}$ $\frac{49}{64}$								
= 113 - 49 = 64								
(ii) $\cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta}$								
$\frac{\frac{49}{113}}{\frac{64}{113}} = \frac{49}{64}$								

AC		$= \sqrt{(BC) + (AB)}$
$=\sqrt{(3k)^2 + (4k)^2}$		
$=\sqrt{16k^2+9k^2}=\sqrt{25k^2}=5k$		
$\sin A = \frac{BC}{AC} = \frac{3k}{5k} = \frac{3}{5}$		
$\cos A = \frac{AB}{AC} = \frac{4k}{5k} = \frac{4}{5}$		
$\tan A = \frac{BC}{AB} = \frac{3k}{4k} = \frac{3}{4}$		
		$1 - \tan^2 A$
Now,		L.H.S. $1+\tan^2 A$
$\frac{1-\frac{9}{16}}{9}$		
$=\frac{1+\frac{9}{16}}{16}$		
16-9 7		
$=\overline{16+9} = \overline{25}$		
$\left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2$		
R.H.S. $\cos A - \sin A = (3)$		
$=\frac{10}{25}-\frac{3}{25}=\frac{7}{25}$		
∵ L.H.S.	=	R.H.S.
$1 - \tan^2 A$		
$\therefore 1 + \tan^2 A = \cos^2 A - \sin^2 A$		
	$\tan A =$	<u>1</u>
4. In \triangle ABC right angles	at B, if	$\sqrt{3}$ find value of:
(i) $\sin A\cos C + \cos A\sin C$ (ii) $\cos A\cos C - \sin A\sin C$		
1		

√3k $= 90^{\circ}$. $= \sqrt{3k}$ triangle Ans. Consider ABC in which ∠ B а = k and Let BC AB Pythagoras theorem, Then, using $=\sqrt{(BC)^{2}+(AB)^{2}}$ AC

$$= \sqrt{k^{2} + (\sqrt{3}k)^{2}}$$

$$= \sqrt{k^{2} + 3k^{2}} = \sqrt{4k^{2}} = 2k$$

$$\therefore \sin A = \frac{BC}{AC} = \frac{k}{2k} = \frac{1}{2}$$

$$\cos A = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$$
For 4 C, Base = BC, Perpendicular = AB and Hypotenuse = AC

$$\therefore \sin C = \frac{AB}{AC} = \frac{\sqrt{3}k}{2k} = \frac{\sqrt{3}}{2}$$
(i) $\sin A \cos C + \cos A \sin C$

$$= \frac{1}{2} \times \frac{1}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$$

$$= \frac{1}{4} + \frac{3}{4} = \frac{4}{4} =$$
(i) $\cos A \cos C - \sin A \sin C$

$$= \frac{\sqrt{3}}{2} \times \frac{1}{2} - \frac{1}{2} \times \frac{\sqrt{3}}{2}$$

$$= \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$$

5. In \triangle PQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of $\sin P_{\star} \cos P$ and $\tan P_{\star}$.

(25-x) cm R (25-x) cm R Ans. In \triangle PQR, right angled at Q. PR + QR = 25 cm and PQ = 5 cm Let QR = x cm and PR = (25-x) cm Using Pythagoras theorem, RP² = RQ² + QP² $\Rightarrow (25-x)^2 = (x)^2 + (5)^2$ $\Rightarrow 625 - 50x + x^2 = x^2 + 25$ $\Rightarrow -50x = -600$ $\Rightarrow x = 12$ \therefore RQ = 12 cm and RP = 25 - 12 = 13 cm

$$\sin P = \frac{RQ}{RP} = \frac{12}{13}$$
$$\cos P = \frac{PQ}{RP} = \frac{5}{13}$$
$$\tan P = \frac{RQ}{PQ} = \frac{12}{5}$$
And

6. If $\tan(A+B) = \sqrt{3}$ and $\tan(A-B) = \frac{1}{\sqrt{3}}$; $0^{\circ} < A+B \le 90^{\circ}$; A > B, Ans. (i) False, because $\sin(A+B) = \sin(60^{\circ} + 30^{\circ}) = \sin 90^{\circ} = 1$ $\sin A + \sin B = \sin 60^{\circ} + \sin 30^{\circ} = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2}$

$$\sin(A+B) \neq \sin A + \sin B$$

(ii) True, because

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1

It is clear, the value of $\sin \theta$ increases as θ increases. (iii) False, because

θ	0°	30°	45°	60°	90°
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0

It is clear, the value of $\cos \theta$ decreases as θ increases (iv) False as it is only true for $\theta = 45^{\circ}$.

$$\Rightarrow \sin 45^\circ = \frac{1}{\sqrt{2}} = \cos 45$$

True, because $\tan 0^\circ = 0$ and $\cot 0^\circ = \frac{1}{\tan 0^\circ} = \frac{1}{0}$ i.e. undefined

7. Choose the correct option. Justify your choice: (i) $9\sec^2 A - 9\tan^2 A =$ (A) 1 (B) 9 (C) 8 (D) 0 (ii) $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \cos ec\theta) =$ (A) 0 (B) 1 (C) 2 (D) none of these (iii) $(\sec A + \tan A)(1 - \sin A) =$ (A) $\sec A$ (B) $\sin A$ (C) $\csc ecA$ (D) $\cos A$ FOR MORE STUDY MATERIALS VISIT : WWW.UNIQUESTUDYONLINE.COM

(iv)
$$\frac{1+\tan^2 A}{1+\cot^2 A} =$$

(A) $\sec^2 A$ (B) -1 (C) $\cot^2 A$ (D) none of these
Ans. (i) (B) $9\sec^2 A - 9\tan^2 A = \frac{9(\sec^2 A - \tan^2 A)}{9 + \sec^2 A} = 9 \times 1 = 9$
(ii) (C) $(1+\tan\theta+\sec\theta)(1+\cot\theta-\csc\theta)$
 $= \left(1+\frac{\sin\theta}{\cos\theta}+\frac{1}{\cos\theta}\right)\left(1+\frac{\cos\theta}{\sin\theta}-\frac{1}{\sin\theta}\right)$
 $= \left(\frac{(\cos\theta+\sin\theta+1)}{\cos\theta}\right)\left(\frac{\sin\theta+\cos\theta-1}{\sin\theta}\right)$
 $= \frac{(\cos\theta+\sin\theta)^2 - (1)^2}{\cos\theta\sin\theta}$
 $= \frac{\cos^2\theta+\sin^2\theta+2\cos\theta\sin\theta-1}{\cos\theta\sin\theta}$
 $= \frac{1+2\cos\theta\sin\theta-1}{\cos\theta\sin\theta}$ [$\because\sin^2\theta+\cos^2\theta=1$]
 $\frac{2\cos\theta\sin\theta}{\cos\theta\sin\theta} = 2$
(ii) (D) $(\sec A + \tan A)(1-\sin A)$
 $= \left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right)(1-\sin A)$
 $= \left(\frac{1+\sin A}{\cos A}\right)(1-\sin A)$
 $= \frac{(1+\sin A}{\cos A})(1-\sin A)$
 $= \frac{(1+\sin^2 A - \cos^2 A)}{\cos A - \cos A} = \cos A$
 $[\because 1-\sin^2 A - \cos^2 A]$
(iv) (D) $\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{\sec^2 A - \tan^2 A + \tan^2 A}{\cos e^2 A - \cot^2 A + \cot^2 A}$
 $= \frac{\sec^2 A}{\cos e^2 A} = \frac{\sin^2 A}{\sin^2 A}$

4 Marks Questions

1. Express the trigonometric ratios $\sin A, \sec A$ and $\tan A$ in terms of $\cot A$

Ans. For sin A,

By using identity $\cos ec^2 A - \cot^2 A = 1$

$$\Rightarrow \cos ec^{2}A = 1 + \cot^{2}A$$

$$\Rightarrow \frac{1}{\sin^{2}A} = 1 + \cot^{2}A$$

$$\Rightarrow \frac{\sin^{2}A}{=} = \frac{1}{1 + \cot^{2}A}$$

$$\Rightarrow \frac{\sin A}{\sqrt{1 + \cot^{2}A}}$$
For $\sec A$,
By using identity $\sec^{2}A - \tan^{2}A = 1$

$$\Rightarrow \sec^{2}A = 1 + \tan^{2}A$$

$$\Rightarrow \sec^{2}A = 1 + \frac{1}{\cot^{2}A} = \frac{\cot^{2}A + 1}{\cot^{2}A}$$

$$\Rightarrow \sec^{2}A = \frac{1 + \cot^{2}A}{\cot^{2}A}$$

$$\Rightarrow \sec^{2}A = \frac{1 + \cot^{2}A}{\cot^{2}A}$$
For $\tan A$,
For $\tan A$,
 $\tan A = \frac{1}{\cot A}$

2. Write the other trigonometric ratios of A in terms of ${}^{\operatorname{sec} \mathcal{A}}$

Ans. For $\sin A$, By using identity, $\sin^2 A + \cos^2 A = 1$ $\Rightarrow \sin^2 A = 1 - \cos^2 A$ $\Rightarrow \frac{\sin^2 A = 1 - \frac{1}{\sec^2 A}}{\frac{\sec^2 A - 1}{\sec^2 A}}$ $\Rightarrow \frac{\sin A = \frac{\sqrt{\sec^2 A - 1}}{\sec A}}{\frac{\sec^2 A - 1}{\sec^2 A}}$ For cos A.

 $\cos A = \frac{1}{\sec A}$

For tan A,

By using identity $\sec^2 A - \tan^2 A = 1$

 $\Rightarrow \tan^2 A = \sec^2 A - 1$

 $\Rightarrow \tan A = \sqrt{\sec^2 A - 1}$

For cos ecA,

$$\cos ecA = \frac{1}{\sin A} = \frac{\frac{1}{\sqrt{\sec^2 A - 1}}}{\sec A}$$

$$\Rightarrow \frac{\csc A}{\sqrt{\sec^2 A - 1}}$$

For cot A,

$$\cot A = \frac{1}{\tan A}$$

$$\Rightarrow \cot A = \frac{1}{\sqrt{\sec^2 A - 1}}$$

4. Choose the correct option. Justify your choice:

(i) $9 \sec^2 A - 9 \tan^2 A =$

(A) 1 (B) 9 (C) 8 (D) 0

(ii)
$$(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \cos ec\theta) =$$

(A) 0 (B) 1 (C) 2 (D) none of these

(iii)
$$(\sec A + \tan A)(1 - \sin A) =$$

(A)
$$\sec A$$
 (B) $\sin A$ (C) $\csc ecA$ (D) $\cos A$

(iv)
$$\frac{1 + \tan^2 A}{1 + \cot^2 A} =$$

(A)
$$\sec^2 A$$
 (B) -1 (C) $\cot^2 A$ (D) none of these
Ans. (i) (B) $9\sec^2 A - 9\tan^2 A$
 $= \frac{9(\sec^2 A - \tan^2 A)}{9 \times 1} = 9 \times 1 = 9$
(ii) (C) $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc e \theta)$
 $= (1 + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta})(1 + \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta})$
 $= (\frac{\cos \theta + \sin \theta + 1}{\cos \theta})(\frac{\sin \theta + \cos \theta - 1}{\sin \theta})$
 $= \frac{(\cos \theta + \sin \theta)^2 - (1)^2}{\cos \theta \sin \theta}$
 $= \frac{(\cos^2 \theta + \sin^2 \theta + 2\cos \theta \sin \theta - 1)}{\cos \theta \sin \theta}$
 $= \frac{1 + 2\cos \theta \sin \theta - 1}{\cos \theta \sin \theta}$
 $[\because \sin^2 \theta + \cos^2 \theta = 1]$
 $= \frac{2\cos \theta \sin \theta}{\cos \theta \sin \theta} = 2$
(iii) (D) $(\sec A + \tan A)(1 - \sin A)$
 $= (\frac{1 + \sin A}{\cos A})(1 - \sin A)$
 $= (\frac{1 + \sin A}{\cos A})(1 - \sin A)$
 $= \frac{1 - \sin^2 A}{\cos A} = \frac{\cos^2 A}{\cos A} = \cos A$
 $[\because 1 - \sin^2 A = \cos^2 A]$
(iv) (D) $\frac{1 + \tan^2 A}{1 + \cot^2 A}$

$$= \frac{\sec^2 A - \tan^2 A + \tan^2 A}{\cos ec^2 A - \cot^2 A + \cot^2 A} = \frac{\sec^2 A}{\cos ec^2 A}$$
$$\frac{1}{\frac{\cos^2 A}{1}} = \frac{\sin^2 A}{\cos^2 A} = \tan^2 A$$

5. Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

 $(\cos ec\theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$ (ii) $\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2 \sec A$ (iii) $\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = 1 + \sec\theta\cos ec\theta$ $\frac{1+\sec A}{\sec A} = \frac{\sin^2 A}{1-\cos A}$ (v) $\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \cos ecA + \cot A$, using the identity $\cos ec^2 A = 1 + \cot^2 A$ (vi) $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$ (vii) $\frac{\sin\theta - 2\sin^3\theta}{2\cos^3\theta - \cos\theta} = \tan\theta$ (viii) $(\sin A + \cos ecA)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$ $(\cos ecA - \sin A)(\sec A - \cos A) = \frac{1}{\tan A + \cot A}$ $\left(\frac{1+\tan^2 A}{1+\cot^2 A}\right) = \left(\frac{1-\tan A}{1-\cot A}\right)^2 = \tan^2 A$ Ans. Proof: (i) L.H.S. $(\cos ec\theta - \cot \theta)^2$

$$= \cos ec^{2}\theta + \cot^{2}\theta - 2\cos ec\theta \cot \theta$$

$$= \frac{1}{\sin^{2}\theta} + \frac{\cos^{2}\theta}{\sin^{2}\theta} - 2 \times \frac{1}{\sin\theta} \cdot \frac{\cos\theta}{\sin\theta}$$

$$= \frac{1 + \cos^{2}\theta}{\sin^{2}\theta} - \frac{2\cos\theta}{\sin^{2}\theta}$$

$$= \frac{1 + \cos^{2}\theta - 2\cos\theta}{\sin^{2}\theta}$$

$$= \frac{(1 - \cos\theta)^{2}}{\sin^{2}\theta}$$

$$[\because a^{2} + b^{2} - 2ab = (a - b)^{2}]$$

$$= \frac{(1 - \cos\theta)(1 - \cos\theta)}{1 - \cos^{2}\theta}$$

$$= \frac{(1 - \cos\theta)(1 - \cos\theta)}{(1 + \cos\theta)(1 - \cos\theta)}$$

$$= \frac{1 - \cos\theta}{(1 + \cos\theta)(1 - \cos\theta)}$$

$$= \frac{1 - \cos\theta}{(1 + \cos\theta)(1 - \cos\theta)}$$

$$= \frac{\cos^{2}\theta + 1 + \sin^{2}\theta + 2\sin A}{(1 + \sin A)\cos A}$$

$$= \frac{\cos^{2}\theta + 1 + \sin^{2}\theta + 2\sin A}{(1 + \sin A)\cos A}$$

$$= \frac{\cos^{2}\theta + \sin^{2}\theta + 1 + 2\sin A}{(1 + \sin A)\cos A}$$

$$= \frac{1 + 1 + 2\sin A}{(1 + \sin A)\cos A}$$

$$= \frac{1 + 1 + 2\sin A}{(1 + \sin A)\cos A}$$

$$= \frac{2 + 2\sin A}{(1 + \sin A)\cos A} = \frac{2(1 + \sin A)}{(1 + \sin A)\cos A}$$

$$= \frac{2}{\cos A} = 2 \sec A = \text{R.H.S}$$

$$\begin{aligned} &(\text{iii)} \text{ L.H.S.} \quad \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} \\ &= \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}} \\ &= \frac{\sin \theta}{\cos \theta} \times \frac{\sin \theta}{\sin \theta - \cos \theta} + \frac{\cos \theta}{\sin \theta} \times \frac{\cos \theta}{\cos \theta - \sin \theta} \\ &= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)} \\ &= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} - \frac{\cos^2 \theta}{\sin \theta (\sin \theta - \cos \theta)} \\ &= \frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)} \\ &= \frac{(\sin \theta - \cos \theta)(\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta)}{\sin \theta \cos \theta (\sin \theta - \cos \theta)} \\ &= \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta} [\because \sin^2 \theta + \cos^2 \theta = 1] \\ &= \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta} [\because \sin^2 \theta + \cos^2 \theta = 1] \\ &= \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta} [\because \sin^2 \theta + \cos^2 \theta = 1] \\ &= \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta} = \frac{1 + \frac{1}{\cos A}}{\frac{1 + \sec A}{\sec A}} = \frac{1 + \frac{1}{\cos A}}{\frac{1 + \cos A}{1 - \cos A}} \\ &= \frac{1 + \cos A \times \frac{1 - \cos A}{1 - \cos A}}{1 - \cos A} \\ &= \frac{1 + \cos A \times \frac{1 - \cos A}{1 - \cos A}}{1 - \cos A} \end{aligned}$$

$$= \frac{\sin^2 A}{1 - \cos A} = \text{R.H.S.}$$

(v) L.H.S. $\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1}$

Dividing all terms by $\sin A$,

$$\frac{\cot A - 1 + \cos ecA}{\cot A + 1 - \cos ecA} = \frac{\cot A + \cos ecA - 1}{\cot A - \cos ecA + 1}$$

$$= \frac{(\cot A + \cos ecA) - (\cos ec^2A - \cot^2 A)}{(1 + \cot A - \cos ecA)}$$

$$= \frac{(\cot A + \cos ecA) + (\cot^2 A - \cos ec^2A)}{(1 + \cot A - \cos ecA)}$$

$$= \frac{(\cot A + \cos ecA)(1 + \cot A - \cos ecA)}{(1 + \cot A - \cos ecA)}$$

$$= \cot A + \cos ecA = R.H.S.$$

$$(vi) L.H.S. \sqrt{\frac{1 + \sin A}{1 - \sin A}}$$

$$= \sqrt{\frac{1 + \sin A}{1 - \sin A}} \times \sqrt{\frac{1 + \sin A}{1 + \sin A}}$$

$$= \sqrt{\frac{(1 + \sin A)^2}{1 - \sin^2 A}}$$

 $\left[\because (a+b)(a-b) = a^2 - b^2\right]$

$$= \sqrt{\frac{\left(1 + \sin A\right)^2}{\cos^2 A}} \left[\because 1 - \sin^2 \theta = \cos^2 \theta \right]$$

 $= \frac{1+\sin A}{\cos A} = \frac{1}{\cos A} + \frac{\sin A}{\cos A}$

 $= \sec A + \tan A = R.H.S.$

(vii) L.H.S. $\frac{\sin\theta - 2\sin^3\theta}{2\cos^3\theta - \cos\theta} = \frac{\sin\theta(1 - 2\sin^2\theta)}{\cos\theta(2\cos^2\theta - 1)}$

$$\begin{aligned} &= \frac{\sin \theta (1-2\sin^2 \theta)}{\cos \theta [2(1-\sin^2 \theta)-1]} \left[\because 1-\sin^2 \theta = \cos^2 \theta \right] \\ &= \frac{\sin \theta (1-2\sin^2 \theta)}{\cos \theta (2-2\sin^2 \theta)} = \frac{\sin \theta}{\cos \theta} = \tan \theta = \text{R.H.S} \\ &\text{(viii) L.H.S. } (\sin A + \cos ecA)^2 + (\cos A + \sec A)^2 \\ &= \left(\sin A + \frac{1}{\sin A} \right)^2 + \left(\cos A + \frac{1}{\cos A} \right)^2 \\ &= \left(\sin A + \frac{1}{\sin A} \right)^2 + \left(\cos A + \frac{1}{\cos A} \right)^2 \\ &= \sin^2 A + \frac{1}{\sin^2 A} + 2\sin A \cdot \frac{1}{\sin A} + \cos^2 A + \frac{1}{\cos^2 A} + 2\cos A \cdot \frac{1}{\cos A} \\ &= 2 + 2 + \sin^2 A + \cos^2 A + \frac{1}{\sin^2 A} + \frac{1}{\cos^2 A} \\ &= 5 + \cos ec^2 A + \sec^2 A \\ &= 5 + 1 + \cot^2 A + 1 + \tan^2 A \\ &[\because \cos ec^2 \theta = 1 + \cot^2 \theta, \sec^2 \theta = 1 + \tan^2 \theta] \\ &= 7 + \tan^2 A + \cot^2 A \\ &= \text{R.H.S. \end{aligned}$$

$$(ix) \text{ L.H.S. } (\cos ecA - \sin A)(\sec A - \cos A) \\ &= \left(\frac{1}{\sin A} - \sin A \right) \left(\frac{1}{\cos A} - \cos A \right) \\ &= \left(\frac{(1-\sin^2 A)}{\sin A} \right) \left(\frac{1-\cos^2 A}{\cos A} \right) \end{aligned}$$

 $= \frac{\cos^2 A}{\sin A} \times \frac{\sin^2 A}{\cos A} = \sin A \cdot \cos A$

$$= \frac{\sin A \cdot \cos A}{\sin^2 A + \cos^2 A} \left[\because \sin^2 \theta + \cos^2 \theta = 1 \right]$$

Dividing all the terms by $\sin A \cdot \cos A$,

 $\frac{\frac{\sin A \cos A}{\sin A \cos A}}{\frac{\sin A \cos A}{\sin A \cos A} + \frac{\cos^2 A}{\sin A \cos A}} = \frac{1}{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}}$ $= \frac{1}{\tan A + \cot A} = \text{R.H.S.}$ $(\textbf{x}) \text{ L.H.S.} \left(\frac{1 + \tan^2 A}{1 + \cot^2 A}\right)$ $= \frac{\sec^2 A}{\cos ec^2 A} \left[\because 1 + \tan^2 \theta = \sec^2 \theta, 1 + \cot^2 \theta = \cos ec^2 \theta\right]$ $= \frac{1}{\cos^2 A} \times \frac{\sin^2 A}{1} = \tan^2 A = \text{R.H.S.}$

Now, Middle side =
$$\left(\frac{1-\tan A}{1-\cot A}\right)^2 = \left(\frac{1-\tan A}{1-\frac{1}{\tan A}}\right)$$

$$= \left(\frac{\frac{1-\tan A}{\tan A-1}}{\tan A}\right)^{2}$$
$$= \left(\frac{\frac{1-\tan A}{-(1-\tan A)}}{\frac{-(1-\tan A)}{\tan A}}\right) = (-\tan A)^{2} = \tan^{2} A = \text{R.H.S.}$$