Quadratic Equations

The polynomial p(x) of degree two is called quadratic polynomial and equation corresponding to p(x)=0, is a quadratic equation in variable x.

Standard form: $p(x) = ax^2 + bx + c = 0$, where $a \neq 0$ and a , b , $c \in R$			
Complete Quadratic Equation	ax ² + bx + c =0. where , a. b. c ∈ R ,a≠0 ,b≠0, c ≠0,		
Pure Quadration	ax ² + bx + c =0, where _ a ∈ R _ a≠0 ,b=0, c =0		
Relation b/w R	oots and Coefficients		
Sum of roots	$(\infty + \beta) = \frac{-b}{a} = \frac{-coefficient of x}{coefficient of x^2}$		
Product of roots	$\propto \beta = \frac{c}{a} = \frac{cons \tan t term}{coefficient of x^2}$		

 The value of x for which the polynomial becomes zero is called zero of a polynomial or root of the

 $-b + \sqrt{D}$

quadratic equation p(x) = 0.

 $D=b^2$ - 4ac ; discriminant, $\alpha =$

roots are given:

 $x^2 - (\alpha + \beta) x + \alpha \beta = 0$

assuming coefficient of x² as 1

formed as

Quadratic equation has 2 roots α and β

Formation of the Quadratic Equations when the

If α and β are given as two roots of the quadratic equation, then the required quadratic equation can be

 $=x^{2}$ – (sum of roots) x + product of roots =0, by

	Nature of D	Nature of the roots	Inference		
	D=0	$\alpha = \beta = \frac{-b}{2\alpha}$	Roots are Real and Equal		
	D > 0, but not a perfect	$\alpha = \frac{-b + irrational}{2a}$	Root are real but irrational		
	square	$\beta = \frac{-b - irrational}{2a}$			
	D = 0 and a perfect square	$\alpha = \frac{-b + rational}{2a}$ $-b - rational$	Roots are real and cational		
		$\mu = \frac{2a}{2a}$	Poots are vidual or imaginany : they do not		
		\propto , β both are imaginary as $\sqrt{D} = \sqrt{-ve} menber$	belong to real numbers		
	Methods	of finding the Roots			
	Factorization	factorizing the quadratic expression into two linear factors with the help of identities or splitting middle term method and equating each factor to zero.			
	Completing	1. reduce the coefficient of x^2 to 1 or a perfect square			
	the square	2. Add and subtract the square of half the coefficient of x so as			
	method	to get an expression of the form $(x - p)^2 = q^2$			
		3. Now $x = p \pm q$, will give the roots			
	Use of Quadratic formula	Roots are given by the Quadratic formula = α , $\beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
N	Method of Solving Word problems:				
	 Translating the word problem into Mathematics form (symbolic form) according 				

- Translating the word problem into Mathematics form (symbolic form) according to the given condition(s)
- Form the word problem into Quadratic equations and solve them