QUADRICTIC EQUATION PART

If the equation $(m^2 + n^2)x^2 - 2(mp + nq)x + p^2 + q^2 = 0$ has equal roots, then

- (a) mp = nq
- (b) mq = np
- (c) mn = pq
- (d) $mq = \sqrt{np}$

UNIQUESTUDY ONLINE. COM

For equal roots,
$$b^{2} = 4ac$$

$$4(mp + nq)^{2} = 4(m^{2} + n^{2})(p^{2} + q^{2})$$

$$m^{2}q^{2} + n^{2}p^{2} - 2mnpq = 0$$

$$(mq - np)^{2} = 0$$

$$mq - np = 0$$

$$mq = np$$
Thus (b) is correct option.

The quadratic equation $2x^2 - 3\sqrt{2}x + \frac{9}{4} = 0$ has

- (b) two equal real roots rown (c) no real roots roots

 - more than 2 real roots

The quadratic equation $x^2 + 4x - 3\sqrt{2} = 0$ has

- (a) two distinct real roots
- (b) two equal real rootsynther.com
 (c) no real rootsyntours its resulting the second synthesis and the second synthesis a

 - (d) more than 2 real roots

Assertion: $4x^2 - 12x + 9 = 0$ has repeated roots.

Reason: The quadratic equation $ax^2 + bx + c = 0$ have repeated roots if discriminant D > 0.

- (a) Both assertion (A) and reason (R) are true and reason
- (R) is the correct explanation of assertion (A).(b) Both assertion (A) and reason (R) are true but reason
- (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

Assertion: The equation $x^2 + 3x + 1 = (x - 2)^2$ is a quadratic equation.

Reason: Any equation of the form $ax^2 + bx + c = 0$ where

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

Solve for $x: x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$

We have

$$x^{2} - (\sqrt{3} + 1)x + \sqrt{3} = 0$$

$$x^{2} - \sqrt{3}x + \sqrt{3}x + \sqrt{3} = 0$$

$$x(x - \sqrt{3}) - 1(x - \sqrt{3}) = 0$$

$$(x - \sqrt{3})(x - 1) = 0$$
Thus $x = \sqrt{3}, x = 1$

Solve the following quadratic equation for
$$x$$
:
$$9x^2 - 6b_5^2x^{-1/2}(a^4 - b^4) = 0$$

$$9x^2 - 6b^2x - (a^4 - b^4) = 0$$

Comparing with $Ax^2 + Bx + C = 0$ we have

$$A = 9, B = -6b^{2}, C = -(a^{4} - b^{4})$$

$$x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

$$x = \frac{6b^{2} \pm \sqrt{(-6b^{2})^{2} - 4 \times 9 \times \{(a^{4} - b^{4})\}}}{2 \times 9}$$

$$= \frac{6b^{2} \pm \sqrt{36b^{4} + 36a^{4} - 36b^{4}}}{18}$$

$$=\frac{6b^2+36b^4+36a^4-36b^4}{18}$$

$$=\frac{6b^2 \pm \sqrt{36a^4}}{18} = \frac{6b^2 \pm 6a^2}{18}$$

Thus
$$x = \frac{a^2 + b^2}{3}, \frac{b^2 - a^2}{3}$$

If 2 is a root of the quadratic equation $3x^2 + px - 8 = 0$ and the quadratic equation $4x^2 + px + k = 0$ has equal roots, find k.

We have
$$3x^2 + px - 8 = 0$$

Since 2 is a root of above equation, it must satisfy it.

Substituting x = 2 in $3x^2 + px - 8 = 0$ we have

$$12 + 2p - 8 = 0$$

$$p = -2$$

Since
$$4x^2 - 2px + k = 0 \text{ has equal roots,}$$
 or
$$4x^2 + 4x + k = 0 \text{ has equal roots,}$$

$$D = b^2 - 4ac = 0$$

$$4^2 - 4(4)(k) = 0$$

or

$$D = b^2 - 4ac = 0$$

$$4^2 - 4(4)(k) = 0$$

$$16 - 16k = 0$$

$$16k = 16$$

Thus
$$k=1$$

Solve for
$$x: \frac{1}{x} + \frac{2}{2x-3} = \frac{1}{x}$$
, $x \neq 0, \frac{2}{3}, 2$.

We have
$$\frac{1}{x} + \frac{2}{2x - 3} = \frac{1}{x - 2}$$
$$\frac{2x - 3 + 2x}{x(2x - 3)} = \frac{1}{x - 2}$$
$$\frac{4x - 3}{x(2x - 3)} = \frac{1}{x - 2}$$
$$(x - 2)(4x - 3) = 2x^2 - 3x$$
$$(x - 2)(4x - 3) = 2x^2 - 3x$$
$$2x^2 - 8x + 6 = 0$$
$$x^2 - 4x + 3 = 0$$

(x-1)(x-3) = 0

Thus x = 1,3

Find for
$$x: \frac{1}{x-2} + \frac{2}{x} = \frac{6}{x}$$
; $x \neq 0, 1, 2$

We have
$$\frac{1}{x-2} + \frac{2}{x-1} = \frac{6}{x}$$

$$\frac{x-1+2x-4}{(x-2)(x-1)} = \frac{6}{x}$$

$$3x^2 - 5x = 6x^2 - 18x + 12$$

$$3x^2 - 13x + 12 = 0$$

$$3x^2 - 4x + 9x + 12 = 0$$

$$x(3x-4) - 3(3x-4) = 0$$

$$(3x-4)(x-3) = 0$$

$$x = \frac{4}{3} \text{ and } 3$$

Hence, $x = 3, \frac{4}{3}$

Sum of the areas of two squares is 468 m². If the difference of their perimeter is 24 m, find the sides of the squares.

$$4x - 4y = 24$$

$$x - y = 6$$

$$(1)$$

According to the question we get

$$x^2 + y^2 = 468 \tag{2}$$

Substituting x = y + 6 from equation (1) in (2) we have

$$(y+6)^{2} + y^{2} = 468$$

$$2y^{2} + 12y + 36 = 468$$

$$2y^{2} + 12y - 432 = 0$$

$$2y^2 + 12y + 36 = 468$$

$$2y^2 + 12y - 432 = 0$$

$$y^2 + 6y - 216 = 0$$

$$(y+18)(y-12) = 0$$

Thus

$$y = -18,12$$

UNIQUESTUDIONLINE.COM